Collision between chemically driven self - propelled drops
نویسنده
چکیده
We use analytical and numerical approaches to investigate head-on collisions between two self-propelled drops described as a phase separated binary mixture. Each drop is driven by chemical reactions that isotropically produce or consume the concentration of a third chemical component, which affects the surface tension of the drop. The isotropic distribution of the concentration field is destabilized by motion of the drop, which is created by the Marangoni flow from the concentration-dependent surface tension. This symmetry-breaking self-propulsion is distinct from other self-propulsion mechanisms due to its intrinsic polarity of squirmers and self-phoretic motion; there is a bifurcation point below which the drop is stationary and above which it moves spontaneously. When two drops are moving in the opposite direction along the same axis, their interactions arise from hydrodynamics and concentration overlap. We found that two drops exhibit either an elastic collision or fusion, depending on the distance from their bifurcation point, which may be controlled, for example, by viscosity. An elastic collision occurs when there is a balance between dissipation and the injection of energy by chemical reactions. We derive the reduced equations for the collision between two drops and analyse the contributions from the two interactions. The concentration-mediated interaction is found to dominate the hydrodynamic interaction for a head-on collision.
منابع مشابه
Lattice Boltzmann study of chemically-driven self-propelled droplets.
We numerically study the behavior of self-propelled liquid droplets whose motion is triggered by a Marangoni-like flow. This latter is generated by variations of surfactant concentration which affect the droplet surface tension promoting its motion. In the present paper a model for droplets with a third amphiphilic component is adopted. The dynamics is described by Navier-Stokes and convection-...
متن کاملSwimming upstream: self-propelled nanodimer motors in a flow†
The dynamics of chemically-powered self-propelled nanodimer motors in a fluid flow are investigated. The dimer motors are confined to move in a square channel within which a Poiseuille-like fluid flow exists. The flow direction is opposite to that of the nanomotor’s directed motion. Simulations of the dynamics are carried out using mesoscopic hybrid molecular dynamics/multiparticle collision dy...
متن کاملSpontaneous Segregation of Self-Propelled Particles with Different Motilities
We study mixtures of self-propelled and passive rod-like particles in two dimensions using Brownian dynamics simulations. The simulations demonstrate that the two species spontaneously segregate to generate a rich array of dynamical domain structures whose properties depend on the propulsion velocity, density, and composition. In addition to presenting phase diagrams as a function of the system...
متن کاملCollective motion of rod-shaped self-propelled particles through collision
Self-propelled rods, which propel by themselves in the direction from the tail to the head and align nematically through collision, have been well-investigated theoretically. Various phenomena including true long-range ordered phase with the Giant number fluctuations, and the collective motion composed of many vorices were predicted using the minimal mathematical models of self-propelled rods. ...
متن کاملHydrodynamic capture of microswimmers into sphere-bound orbits.
Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016